В лаборатории Венского технического университета был создан процессор, основой для которого послужил слой дисульфида молибдена толщиной в 1 атом.
Материал относится к так называемым 2D-полупроводникам, которые должны стать основой для ультратонкой прозрачной техники будущего. Чип имеет площадь 0,6 кв. мм. и представляет собой однобитный микропроцессор со 115 транзисторами.
Ученые из лаборатории Венского технического университета (TU Wien) создали микропроцессор, который базируется на двухмерном полупроводнике. В качестве полупроводникового материала был использован дисульфид молибдена.
2D-материалы получили свое название за очень небольшую толщину пласта – она достигает всего одного атома.
Для электроники это означает возможность создать чип, который будет прозрачным, гибким и более энергоэффективным, чем обычные процессоры. Двухмерные полупроводники считаются основой для прозрачной и ультратонкой техники будущего.
Чип, созданный командой TU Wien, имеет площадь 0,6 кв. мм. Это однобитный микропроцессор со 115 транзисторами. Процессор может исполнять программы – как за счет встроенной, так и за счет внешней памяти.
Производительность процессора можно увеличить путем соединения нескольких таких чипов в одну схему. Вообще, это самая сложная схема из 2D-материалов, существующая на данный момент, утверждают разработчики.
2D-материалы обычно производятся путем химического осаждения из газовой фазы. В ходе реакции на подложке из некоторого вещества, помещенной в пары другого вещества, образуется тонкая пленка. 2D-полупроводники активно исследуются с момента получения первого образца графена – слоя углерода толщиной в один атом.
Схема работы двухмерного полупроводника дисульфида молибдена
Образец графена удалось получить в 2004 г. исследователям Андрею Гейму и Константину Новоселову. Для стабилизации хрупкого двухмерного соединения была использована подложка из окисленного кремния.
Графен с тех пор рассматривается как основной материал для производства гибких дисплеев для мобильной техники.
Его существенный недостаток – слишком небольшая энергетическая щель, что затрудняет переключение полевых транзисторов.
Помимо графена, к двухмерным материалам относится шестигранный нитрид бора, известный также как «белый графен». Он напоминает графен и имеет сотовую структуру с чередованием атомов бора и азота вместо углерода.
При этом его энергетическая щель больше чем у графена – она составляет около 5,97 эВ. Таким образом, «белый графен» выполняет скорее функцию изолятора, чем полуметалла. Однако он также может служить в качестве полупроводника благодаря зигзагообразным острым краям и пустотам.
К перспективным двухмерным соединениям относят также дихалькогениды переходных металлов. Они получаются в результате соединения одного атома металла группы VI, V и VI с двумя атомами халькогена, такого как сера, селен или теллур.
Они имеют слоистую структуру – слой атомов металла лежит между слоями атомов халькогена. Различными способами из полученного соединения можно отделить один слой, чтобы затем использовать в наноэлектронике и оптоэлектронике.